This Blog Provide Topics, Abstracts, Documentations, Slides for various Seminars, Projects, Paper Presentations. After Reading Abstract You Can Download Corresponding Paper By Clicking The Link Given At The Bottom. On The Right Side Bar Select Your Branches CSE, ECE, EEE, IT, MCA, MBA, Civil, Mechanical Departments And More Stuff Will Be Added From Time To Time. So Please Be In Touch With This Blog For More And Apt Information.
|Speech Compression| |Data Security| |Artificial Neural Networks| |Moletronics| |AI Speech Recognition| |ATM| |Blue Eyes| |Brain Computer Interface| |Fuzzy Logic| |Mobile Voting| |Information Security Using Steganography| |Modern Irrigation Systems| |Asynchronous Chip| |Smartphone| |Gizmag|Subtractive Synthesis | Spread Spectrum | Speech Compression | Paper Batteries | Satellite Encryption | Robotics 1 2 | Silicon in Nanotechnology | Renewable Energy Systems | Reed Solomon Code | Vlsi Paper Presentation | Green Nanotechnology | Aerospace Nanotechnology | Nanotechnology | Brain Controlled Car 1 | Bubble Power | Brain Machine Interface | Beam Robotics Nervous Systems | Artificial Photosynthesis | Neural Networks | Adaptive Filtering | Finger Print Recognizer | Vlsi Chip | Digital Water Marking |
VLSI FOR NEURAL NETWORKS AND THEIR APPLICATIONS
Most of the students of Electronics Engineering are exposed to Integrated Circuits (IC's) at a very basic level, involving SSI (small scale integration) circuits like logic gates or MSI (medium scale integration) circuits like multiplexers, parity encoders etc. But there is a lot bigger world out there involving miniaturization at levels so great, that a micrometer and a microsecond are literally considered huge! This is the world of VLSI - Very Large Scale Integration.
Neural networks are a new method of programming computers. They are exceptionally good at performing pattern recognition and other tasks that are very difficult to program using conventional techniques. Programs that employ neural nets are also capable of learning on their own and adapting to changing conditions.
Neural nets may be the future of computing .A good way to understand them is with a puzzle that neural nets can be used to solve. Suppose that you are given 500 characters of code that you know to be C, C++, Java, or Python. Now, construct a program that identifies the code's language. One solution is to construct a neural net that learns to identify these languages.
According to a simplified account, the human brain consists of about ten billion neurons -- and a neuron is, on average, connected to several thousand other neurons. By way of these connections, neurons both send and receive varying quantities of energy. One very important feature of neurons is that they don't react immediately to the reception of energy.
Instead, they sum their received energies, and they send their own quantities of energy to other neurons only when this sum has reached a certain critical threshold. The brain learns by adjusting the number and strength of these connections. The brain's network of neurons forms a massively parallel information processing system. This contrasts with conventional computers, in which a single processor executes a single series of instructions.
Click Here to Download