This Blog Provide Topics, Abstracts, Documentations, Slides for various Seminars, Projects, Paper Presentations. After Reading Abstract You Can Download Corresponding Paper By Clicking The Link Given At The Bottom. On The Right Side Bar Select Your Branches CSE, ECE, EEE, IT, MCA, MBA, Civil, Mechanical Departments And More Stuff Will Be Added From Time To Time. So Please Be In Touch With This Blog For More And Apt Information.
|Speech Compression| |Data Security| |Artificial Neural Networks| |Moletronics| |AI Speech Recognition| |ATM| |Blue Eyes| |Brain Computer Interface| |Fuzzy Logic| |Mobile Voting| |Information Security Using Steganography| |Modern Irrigation Systems| |Asynchronous Chip| |Smartphone| |Gizmag|Subtractive Synthesis | Spread Spectrum | Speech Compression | Paper Batteries | Satellite Encryption | Robotics 1 2 | Silicon in Nanotechnology | Renewable Energy Systems | Reed Solomon Code | Vlsi Paper Presentation | Green Nanotechnology | Aerospace Nanotechnology | Nanotechnology | Brain Controlled Car 1 | Bubble Power | Brain Machine Interface | Beam Robotics Nervous Systems | Artificial Photosynthesis | Neural Networks | Adaptive Filtering | Finger Print Recognizer | Vlsi Chip | Digital Water Marking |
On the Performance Benefits of Multihoming Route Control
Multihoming is increasingly being employed by large enterprises and data centers to extract good performance and reliability from their ISP connections. Multihomed end networks today can employ a variety of route control products to optimize their Internet access performance and reliability. However, little is known about the tangible benefits that such products can offer the mechanisms they employ and their trade-offs. This paper makes two important contributions. First, we present a study of the potential improvements in Internet round-trip times (RTTs) and transfer speeds from employing multihoming route control. Our analysis shows that multihoming to three or more ISPs and cleverly scheduling traffic across the ISPs can improve Internet RTTs and throughputs by up to 25% and 20%, respectively. However, a careful selection of ISPs is important to realize the performance improvements. Second, focusing on large enterprises, we propose and evaluate a wide-range of route control mechanisms and evaluate their design trade-offs. We implement the proposed schemes on a Linux-based Web proxy and perform a trace-based evaluation of their performance. We show that both passive and active measurement-based techniques are equally effective and could improve the Web response times of enterprise networks by up to 25% on average, compared to using a single ISP. We also outline several “best common practices” for the design of route control products.
Existing System:-
• Previous work on multihoming route control doesn’t concentrate on achieving performance balance load over multiple broadband-class links.
• Previous work achieves high performance with single higher-bandwidth link.
Proposed System:-
• We study mechanisms for improving Internet performance of enterprise networks via route control.
• Here we achieved balance load over multiple broadband-class links using multihoming route control.
Hardware Interface:-
• Hard disk : 40 GB
• RAM : 512 MB
• Processor Speed : 2.20GHz
• Processor : Pentium IV Processor
Software Interface:-
• JDK 1.5
• Swing Builder